7. SUBJECT DETAILS

7.4 VLSI DESIGN

7.4.1 Objective and Relevance

7.4.2 Scope

7.4.3 Prerequisites

7.4.4 Syllabus

i. JNTU

ii. GATE

iii. IES

7.4.5 Suggested Books

7.4.6 Websites

7.4.7 Experts’ Details

7.4.8 Journals

7.4.9 Findings and Development

7.4.10 Session Plan

7.4.11 Student Seminar Topics

7.4.12 Question Bank

i. JNTU

ii. GATE

iii. IES

7.4.13 Unit wise Assignment Questions
7.4.1 OBJECTIVES AND RELEVANCE

The objective of this subject is to get clear concepts on electrical behavior of NMOS, PMOS, CMOS, BiCMOS circuits and their fabrication Procedures. In addition, concepts of VLSI design flow of digital systems and various tools used for VLSI circuit design are discussed.

The area, power and cost aspects have made silicon, the popular semiconductor material used in fabrication technology for electronics in a very wide range of applications.

7.4.2 SCOPE

Growing technological requirements and the wider spread acceptance of sophisticated electronic devices have created an unprecedented demand for large scale complex integrated circuits. The goal of the course is to introduce basic electrical principles needed by the integrated circuit designer and to discuss engineering trade-offs and practical considerations that are necessary for the student to make the transition from the class room to the industry as an VLSI circuit designer. The ultimate goal of the circuit designer is to get efficiently designed physical piece of silicon that satisfies the original specifications.

7.4.3 PREREQUISITE

Familiarity with electrical behaviour of electronic devices and circuits. The modeling of digital systems and their design concepts is required.

7.4.4 SYLLABUS - JNTU

UNIT - I
OBJECTIVE
Student will have clear understanding of fabrication process of MOS, CMOS, Bi-CMOS Transistors, active resistors and capacitors.

SYLLABUS
INTRODUCTION: Introduction to IC Technology - MOS, PMOS, NMOS, CMOS & BiCMOS technologies- Oxidation, Lithography, Diffusion, Ion implantation, Metallization, Encapsulation, Probe testing, Integrated Resistors and Capacitors

UNIT - II
OBJECTIVE
To understand the electrical properties of MOS circuits and to calculate the drain currents in saturation and in pinchoff regions.

SYLLABUS
BASIC ELECTRICAL PROPERTIES: Basic Electrical Properties of MOS and BiCMOS Circuits: Ids-Vds relationships, MOS transistor threshold Voltage, gm, gds, figure of merit wo; Pass transistor, NMOS Inverter, Various pull ups, CMOS Inverter analysis and design, Bi-CMOS Inverters.

UNIT - III
OBJECTIVE
Upon on the completion of this unit the student will learn design rules, layout diagram and stick diagram and will also acquaint with knowledge on electrical constraint while designing.

UNIT - IV
OBJECTIVE
At the end of this unit student will understand the concept of parasitic resistance, capacitance and thus propagation delay of gate level circuits.

SYLLABUS
GATE LEVEL DESIGN: Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Basic circuit concepts, Sheet Resistance RS and its concept to MOS, Area Capacitance Units, Calculations - Delays, Driving large Capacitive Loads, Wiring Capacitances, Fan-in and fan-out, Choice of layers

UNIT - V
OBJECTIVE
Subsystem design used in VLSI integrated circuits is discussed for adders, multipliers, shifters, ALUs, parity generators, comparators and so on.

SYLLABUS
DATA PATH SUBSYSTEM DESIGN: Subsystem Design, Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Zero/One Detectors, Counters, High Density Memory Elements

UNIT - VI
OBJECTIVE
Students will learn about Array Subsystems used in sequential circuit designs i.e SRAM, DRAM, CAM & ROM.

SYLLABUS
ARRAY SUBSYSTEMS: SRAM, DRAM, ROM, Serial Access Memories, Content addressable memory

UNIT - VII
OBJECTIVE
The architectural details of FPGAs and CPLDs is discussed and procedural steps to develop semiconductor ICs like full custom, semicustom and programmable ICs.

SYLLABUS
SEMICONDUCTOR INTEGRATED CIRCUIT DESIGN: PLAs, FPGAs, CPLDs, Standard Cells, Programmable Array Logic, Design Approach, Parameters influencing low power design

UNIT - VIII
OBJECTIVE
At the end of this unit student would have learnt about the principle of design validation and Testing of VLSI Circuits. Testing procedures at different levels like chip and system level is handled in this unit.

SYLLABUS
7.4.4.2 SYLLABUS -GATE

UNIT - I
Device technology, Integrated circuits fabrication process, oxidation, diffusion, ion implantation, Photolithography, n-tub, p-tub and twin-tub CMOS process

UNIT – II III, IV, V, VI, VII and VIII
Not applicable

7.4.4.3 SYLLABUS-IES

Not applicable

7.4.5. SUGGESTED BOOKS

TEXTBOOKS :

REFERENCES :

7.4.6 WEBSITES

1. www.mos.stanford.edu
2. www.cs.virginia.edu
3. www.public.asu.edu
4. www.ee.princeton.edu/~wolf/modern-vlsi
5. www.mosis.edu
6. www.vcapp.csee.usf.edu
7. www.vlsi.com
8. www.vlsi-india.net
9. www.electronics-tutorials.com
10. www.semiconductors.phillips.com
7.4.7 EXPERT'S DETAILS

INTERNATIONAL

1. Dr. Gabriel Robins
 School of Engg. and Applied Science
 University of Virginia
 151, Engineers Way, P.O.Box 400740
 Charlottesville, VA 22904-4740
 email: robins@cs.Virginia.edu

2. Dr. Murali Varanasi
 Professor.
 Dept. of CSE.
 4202 E.Fowler Avenue, ENB 118
 University of south florida
 email: varanasi@csee.usf.edu

3. Dr. Kaushik roy
 Head, Nano-electronics Research Laboratory
 Purdue University
 West Lafayette, IN 47907, USA
 email: kaushik.roy.1 @purdue.edu.

NATIONAL

1. Dr. C.P. Ravi Kumar
 APDC, Texas Instruments (India) Pvt. Ltd
 Bagmane Tech Park, Opp. LRDE
 C.V. Raman Nagar
 Bangalore - 560 093
 email: ravikumar @ vlsi-india.net

2. Dr. Srinivasan.S
 Prof. and Head of the Dept.
 ESB 120
 Dept. of Electrical Engineering
 IIT Madras, Chennai - 600036
 email: srini@ee.iitm.ac.in

3. Dr. Bhat. K.N.
 ESB 208 C
 Dept of Electrical Engg.
 IIT Madras, Chennai - 600036
 email: knbhat@ee.iitm.ernet.in

REGIONAL

1. Dr. N.S. Murthy
 Head ECE, Dept.
 NIT. Warangal
 email: nsm@nitw.ernet.in

2. Dr. K.S.R. Krishna Prasad.
 Prof. ECE. Dept.
 NIT. Warangal
 email: krish@nitw.ernet.in
7.4.8 JOURNALS

INTERNATIONAL
1. IEEE Transactions on VLSI systems
2. Solid-state circuits Magazine IEEE
3. Electron Devices Magazine IEEE
4. Nano Technology IEEE

NATIONAL
1. IETE Journal of Research
2. Journal of VLSI Design
3. IETE Journal on Technical Review

7.4.9 FINDINGS AND DEVELOPMENTS

UNIT-I: INTRODUCTION TO IC TECHNOLOGY

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Topics in JNTU Syllabus</th>
<th>Modules and Sub-Modules</th>
<th>Lecture No.</th>
<th>Suggested Books</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to IC Technology</td>
<td>Objectives and relevance Prerequisites and suggested Books</td>
<td>L1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2 | MOS, PMOS, NMOS CMOS and BICMOS | Basic MOS Transistors:
Enhancement mode transistor action
Depletion mode transistor action
NMOS and PMOS Fabrication Process | L2 | T1-Ch1, T2-Ch1, R2-Ch1 | GATE |
| | | CMOS Technology:
P well and N well Process
Twin Tub
Bi CMOS Technology:
Comparison of IC Technologies
Bi CMOS Fabrication in an N well Process | L3 | T1-Ch1, T2-Ch1, R2-Ch1 | GATE |
<p>| 3 | Oxidation, Lithography | Oxidation and lithography process Lithography Techniques; Optical, Electron, X-ray Ion lithography | L4 | T1-Ch1, T2-Ch1, R2-Ch1 | GATE |
| 4 | Diffusion, Ion Implantation | Expitaxy Deposition Ion Implantation Diffusion | L6 | T2-Ch1, T3-Ch3, R1-Ch2 | GATE |</p>
<table>
<thead>
<tr>
<th>5</th>
<th>Metallization, Encapsulation</th>
<th>Metallization over glass</th>
<th>L7</th>
<th>T2-Ch1, T3-Ch3, R1-Ch2</th>
<th>GATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Probe Testing, Integrated resistors and capacitors</td>
<td>MOS resistors MOS capacitors Cross over testing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CMOS Nanotechnology</td>
<td>CMOS Nanotechnology</td>
<td>L8</td>
<td>T1-Ch1, T2-Ch12,</td>
<td></td>
</tr>
</tbody>
</table>

UNIT II : Basic Electrical Properties of MOS and BiCMOS circuits

<table>
<thead>
<tr>
<th>8</th>
<th>I_{DS}, V_{DS} relationships</th>
<th>$I_{DS}-V_{DS}$ relationships: Non Saturated and Saturated region</th>
<th>L9</th>
<th>T1-Ch1, T2-Ch2, T3-Ch2</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>MOS Transistor Threshold voltage</td>
<td>Aspects of MOS transistor: Threshold voltage ((V_t), g_m, g_{ds},) figure of merit ((W_0)) Transconductance (g_m) and output conductance (g_{ds}) figure of merit (W_0)</td>
<td>L10</td>
<td>T1-Ch1, T2-Ch2, T3-Ch2</td>
</tr>
<tr>
<td>10</td>
<td>Pass transistor NMOS inverter</td>
<td>Pass transistor NMOS inverter</td>
<td>L11</td>
<td>T1-Ch1, T2-Ch2, T3-Ch2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Various Pull-ups</td>
<td>Pull-up to pull-down ratio for an NMOS INV driven by another NMOS inverter</td>
<td>L12</td>
<td>T1-Ch1, T2-Ch2, T3-Ch2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pull-up to pull-down ratio for an NMOS inverter driven through one or more pass transistor, Alternate forms of pull-ups, Load (R_L), NMOS depletion mode transistor pull-up, NMOS Enhancement and</td>
<td>L13</td>
<td>T1-Ch1, T2-Ch2, R1-Ch7</td>
</tr>
<tr>
<td></td>
<td>Complementary transistor Pull up</td>
<td>11 CMOS inverter analysis and design</td>
<td>12 BiCMOS inverters</td>
<td>13 Latch up in CMOS Circuits</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>-------------------------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>CMOS inverter analysis and design, NMOS transistor Circuit model</td>
<td>Characteristics of NPN Bipolar transistor and BICMOS Inv Comparative Aspects of key parameters of CMOS & BJT Latch up in BICMOS</td>
<td></td>
<td>Latch up circuit model, Latch up circuit for N well Process</td>
</tr>
</tbody>
</table>

| | | | L14 | L15 | T1-Ch2, T2-Ch2, T3-Ch7, R1-Ch7 | T1-Ch2, T2-Ch2, T3-Ch2, R1-Ch8 |

UNIT III : VLSI CIRCUIT DESIGN PROCESSES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>L16</th>
<th>L17</th>
<th>T1-Ch3, T2-Ch3, T3-Ch1, R2-Ch2</th>
<th>T1-Ch3, T2-Ch3, T3-Ch1, R2-Ch2</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>VLSI Design Flow, MOS layers</td>
<td>VLSI design flow, Layers of abstraction Illustration of design process, MOS layers</td>
<td></td>
<td>Stick diagram</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L16</td>
<td>L17</td>
<td>T1-Ch3, T2-Ch3, T3-Ch1, R2-Ch2</td>
<td>T1-Ch3, T2-Ch3, T3-Ch1, R2-Ch2</td>
</tr>
<tr>
<td>15</td>
<td>Stick diagram</td>
<td>Introduction to Stick diagram, Problems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Design rules and layouts</td>
<td>NMOS design style CMOS design style Design rules and layout lambda based design rules General observations of the design rules</td>
<td>L18</td>
<td>T1-Ch3, T2-Ch3, T3-Ch1,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T1-Ch3, T2-Ch4, T3-Ch3, R2-Ch2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2λm CMOS Design rules for wires, Contacts and Transistors layout diagrams for NMOS CMOS inverter and gates</td>
<td>2λm double metal double poly CMOS/BiCMOS rules Layout diagrams for NMOS inverter CMOS inverter and gates</td>
<td>L20-21</td>
<td>T1-Ch3, T2-Ch4, T3-Ch3, R2-Ch2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td>Topic</td>
<td>Subtopics</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-----------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIT IV: GATE LEVEL DESIGN</td>
<td>Scaling of MOS circuits</td>
<td>Scaling models and scaling factors, Scaling factors for device parameters</td>
<td>L22 T1-Ch5, T2-Ch4, T3-Ch4, R2-Ch2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Logic gates and other complex gates</td>
<td>CMOS implementation and Layouts of: NAND, NOR, AND, OR, NOT and EX-OR gates</td>
<td>L24-25 T1-Ch6, T2-Ch5, R2-Ch3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch logic, Alternate gate circuits</td>
<td>Switch logic, Alternate gate circuits, Pseudo NMOS logic, DCVS logic, Domino logic</td>
<td>L26 T1-Ch6, T2-Ch5, R2-Ch3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time delays, Driving Large Capacitive loads</td>
<td>Area capacitance of layer standard unit of capacitance, Calculations of Delay unit(λ), Methodology for drive large capacitive loads</td>
<td>L28 T1-Ch4, T2-Ch5, T3-Ch4, R2-Ch4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wiring Capacitance, Fan-in, Fan-out, Choice of Layers</td>
<td>Wiring Capacitance, Fan-in, Fan-out, Choice of Layers</td>
<td>L29 T1-Ch4, T2-Ch5, T3-Ch4, R2-Ch4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIT V: DATA PATH SUBSYSTEM DESIGN</td>
<td>Shifters</td>
<td>Combinational shifters</td>
<td>L30 T1-Ch8, T2-Ch7, T3-Ch8, R1-Ch11, R2-Ch6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adders</td>
<td>Full adder, parallel adder, serial adder, Carry-save addition, Transmission – gate adder</td>
<td>L31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 25 | ALUs, Multipliers | Carry look-ahead adder
Carry-select adder
Conditional –sum adder
Very wide adder | L32 | T1-Ch8, T2-Ch7, T3-Ch8, R1-Ch12, R2-Ch6 |
| 26 | Parity generators, Comparators | Boolean operations-ALUs, Multiplication
Array multiplication
Radix-n multiplication
Wallace tree multiplication
Serial multiplication | L33 | T1-Ch8, T2-Ch7, T3-Ch8, R1-Ch12, R2-Ch6 |
| 27 | Zero/one detectors, Counters | Parity generators, Comparators | L34 | T1-Ch8, T2-Ch7, T3-Ch8, R1-Ch12, R2-Ch6 |

UNIT VI: ARRAY SUBSYSTEMS

| 28 | SRAM | SRAM – Memory cell Read/Write operation
Decoders, Bit line conditioning and Column circuitry
Multi-ported SRAM and Registers files
Large SRAMs | L36 | T1-Ch9, T2-Ch7 T3-Ch9, R2-Ch6 |
| 29 | DRAM, ROM | Sub array architectures
Column Circuitry
Programmable ROMs, NAND ROMs | L40 | T2-Ch7, T3-Ch9, R2-Ch6 |
30	Large SRAMs		L39	
31	Programmable ROMs, NAND ROMs		L41	
30	Serial Access Memories	Shift Registers	L42	T3-Ch9
31	Content Addressable Memory	Queues (FIFO, LIFO)	L43	
	Content Addressable memory	L44		

UNIT VII: SEMICONDUCTOR INTEGRATED CIRCUIT DESIGN

32	PLAs, FPGAs, CPLDs	Introduction to Programmable Logic arrays, Field programmable gated arrays, Complex programmable logic devices	L45-46	T1-Apendix-C, T2-Ch6, R1-Ch13, R2-Ch6
33	Standard cells	Standard –cell based ASICs	L47	
34	Programmable Array Logic	Logic functions Implementation using PLAs	L48-49	T1-Apendix-C, T2-Ch6, R1-Ch13
35	Design approach	Design approach for different target devices	L50	T2-Ch6, T3-Ch10
36	Parameters influencing Low Power Design	Approach for Low power design	L51	T2-Ch6, T3-Ch6, R2-Ch3

UNIT VIII: CMOS TESTING

<p>| 37 | CMOS Testing, Need for testing | Functionality Test Manufacturing Test | L52 | T1-Ch10, T2-Ch9, T3-Ch12, R2-Ch10 |
| 38 | Test principles | Fault models Observability and controllability Fault coverage ATPG Delay fault testing Statistical fault analysis etc. | L53 | T1-Ch10, T2-Ch9, T3-Ch12, R2-Ch10 |
| 39 | Design strategies for test | Design for testability Adhoc Testing Scan based test techniques | L55 | T1-Ch10, T2-Ch9, T3-Ch12, R2-Ch10 |</p>
<table>
<thead>
<tr>
<th>40</th>
<th>Chip level test techniques</th>
<th>Regular logic arrays</th>
<th>L57</th>
<th>T1-Ch10, T2-Ch9, T3-Ch12, R2-Ch10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Memories, Random logic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>41</th>
<th>System level test techniques</th>
<th>Boundary scan, The Test Access Port (TAP)</th>
<th>L58</th>
<th>T1-Ch10, T2-Ch9, T3-Ch12, R2-Ch10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>42</th>
<th>Layout design for improved testability</th>
<th>Layout design for improved testability</th>
<th>L59</th>
<th>T1-Ch10, T2-Ch9, T3-Ch12, R2-Ch10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.4.11 STUDENT SEMINAR TOPICS

7.4.12 QUESTION BANK

UNIT – I

1. Explain the fabrication of a CMOS transistor.
 (Nov 13)

2. With neat sketches explain how npn transistor is fabricated in Bipolar process.
 (Nov/Dec 13, May 09, Sep 08, 06)

3. With neat diagrams, explain the different steps in p-well fabrication of CMOS transistors.
 (Nov 12)

4. i. Give the steps of nMOS fabrication along with neat diagrams.
 ii. What are the thermal apsects of processing nMOS and CMOS devices?
11. Draw a twin tub structure and explain.

5. How Integrated Passive Components are fabricated in ICs? Explain. (Jan 11, May 09)

6. Explain about oxidation, Diffusion and Ion Implementation Processes of IC Fabrication. (Jan 11)

7. i. With the help of neat sketches, explain about the fabrication sequence of I.C.
 ii. Using necessary sketches, explain about photolithography process, in semiconductor device manufacture. (Jan 11 May 09, 08, 07, Sep 06)

8. i. Clearly explain the diffusion process in IC fabrication.
 ii. Clearly explain various diffusion effects in silicon with emphasis on VLSI application. (May 09, Sep 07)

9. Explain the MOS Transistor operation with the help of neat sketches in the following modes
 i. Enhancement mode
 ii. Depletion mode (May 09)

10. i. With neat sketches explain the NMOS and PMOS fabrication procedure.
 ii. Draw the cross sectional view of CMOS P-Well inverter. (May 09)

11. i. With neat sketches explain automatic diffusion mechanism
 ii. Explain clearly about different types of packing methods used in IC fabrication (Sep 08)

12. Explain about the following two oxidation methods
 i. High pressure oxidation
 ii. Plasma oxidation (Sep 08, May 07)

13. i. With neat sketches explain CMOS fabrication using n-well process.
 ii. Explain how capacitors are fabricated in CMOS process. (Sep 08, 07)

14. Mention different growth technologies of the thin oxides and explain about any one technique. (Sep 08)

15. i. Mention the properties of the twin oxide.
 ii. Clearly explain about ION implantation step in IC fabrication

16. With neat sketches explain the electron lithography process. (May 08, Sep, May 06, May 05)

17. Compare between CMOS and bipolar technologies. (May 08, 05)

18. i. What are the steps involved in the n MOS fabrication - Explain with neat sketches
ii. In what way pMOS fabrication is different from nMOS fabrication? (May 08, Nov 03)

19. i. What is Moore’s Law? Explain its relevance with respect to evolution of IC technology.
 ii. What is the size of Silicon wafer currently used for the manufacture of ICS?
 iii. What is the current commercial device feature size? (May 08, 03)

20. With neat sketches explain how Diodes and Resistors are fabricated in Bipolar process. (May 08, Sep 07)

21 i. With neat sketches explain how resistors and capacitors are fabricated in p-well process.
 ii. With neat sketches explain how resistors and capacitors are fabricated in n-well process. (May 08, Sep, May 07)

22. Explain the following
 i. Thermal oxidation technique.
 ii. Kinetics of thermal oxidation. (May 08)

23. Explain the following
 i. Double metal MOS process rules.
 ii. Design rules for P-well CMOS process (May 08)

24. With neat sketches explain CMOS fabrication using Twin - Tub process. (May 08)

25. For the MOSFET M1 shown in the figure, assume W/L = 2, VDD = 2.0 V, Cox = 100μA/V and VTH = 0.5 V. The transistor M1 switches from saturation region to linear region when Vin (in Volts) is_________________. (GATE 2014)

2. In CMOS technology, shallow P-well or N-well regions can be formed using (GATE 2014)
 (A) low pressure chemical vapour deposition
 (B) low energy sputtering
 (C) low temperature dry oxidation
 (D) low energy ion-implantation
3. The output (Y) of the circuit shown in the figure is
(A) A + B+ C
(B) A + B . C + A .C
(C) A + B+ C
(D) A . B . C

4. In MOSFET fabrication, the channel length is defined during the process of
(A) Isolation oxide growth
(B) Channel stop implantation
(C) Poly-silicon gate patterning
(D) Lithography step leading to the contact pads

5. In IC technology, dry oxidation (using dry oxygen) as compared to wet oxidation (using steam or water vapor) produces
(A) superior quality oxide with a higher growth rate
(B) inferior quality oxide with a higher growth rate
(C) inferior quality oxide with a lower growth rate
(D) superior quality oxide with a lower growth rate

6. In a MOSFET operating in the saturation region, the channel length modulation effect causes
(A) an increase in the gate-source capacitance
(B) a decrease in the Transconductance
(C) a decrease in the unity-gain cutoff frequency
(D) a decrease in the output resistance
7. In the CMOS circuit shown, electron and hole mobilities are equal, and M1 and M2 are equally sized. The device M1 is in the linear region if

\[|V_{T_h}| = 1 \text{V} \]

\[V_{in} \]

\[V_{T_n} = 1 \text{V} \]

\[5 \text{V} \]

\[
\begin{align*}
(A) & \quad V_{in} < 1.875 \text{V} \\
(B) & \quad 1.875 \text{V} < V_{in} < 3.125 \text{V} \\
(C) & \quad V_{in} > 3.125 \text{V} \\
(D) & \quad 0 < V_{in} < 5 \text{V}
\end{align*}
\]

(GATE 2012)

8. In the three-dimensional view of a silicon n-channel MOS transistor shown below, \(\delta = 20 \text{nm} \). The transistor is of width 1 \(\mu \text{m} \). The depletion width formed at every p-n junction is 10 nm. The relative permittivity of Si and SiO2, respectively, are 11.7 and 3.9, and \(\varepsilon_0 = 8.9 \times 10^{-12} \text{F/m} \).

\[
(\text{GATE}2012)
\]

i. The gate-source overlap capacitance is approximately

\(\begin{align*}
(A) & \quad 0.7 \text{pF} \\
(B) & \quad 0.7 \text{pF} \\
(C) & \quad 0.35 \text{pF} \\
(D) & \quad 0.24 \text{pF}
\end{align*} \)
ii. The source-body junction capacitance is approximately
(A) 2 pF (B) 7 pF (C) 2 pF (D) 7 pF

9. Thin gate oxide in a CMOS process in preferably grown using (GATE 2010)
(A) wet oxidation (B) dry oxidation
(C) epitaxial deposition (D) ion implantation

UNIT – II

1. Derive the equation for the drain current of a NMOS transistor. (May 13)

2. i. Derive the expression for the threshold voltage of MOSFET.
 ii. Explain the latch-up phenomenon in CMOS circuits and the methods by which that can be eliminated. (Nov/Dec 12)

3. i. What is meant by figure of Merit of a transistor? Derive the figure of merit of MOS transistor.
 ii. Give a comparison between CMOS and Bipolar transistor with respect to their (May 12)

4. Draw the circuit for NMOS inverter and explain its operation. (Jan 11)

5. Draw the circuits for n-MOS, p-MOS and C-MOS Inverter and explain about their operation and compare them. (Jan 11)

6. Explain about the following terms, using necessary theoretical equations, pertaining to MOSFETs.
 i. Threshold voltage V_{Th} and its effect on MOSFET current Equations (Jan 11, Sep, May 08, Sep, May 07)
 ii. Body effect parameter.

7. i. Draw an n MOS transistor model indicating all parameters.
 ii. Draw the circuit diagram of a Bi CMOS inverter with no static current.
 iii. What is latch up incase of CMOS circuits? Explain with relevant diagrams. How latch up problem can be overcome? (May 09, 08, 04)

8. i. Explain the operation of BiCMOS inverter? Clearly specify its characteristics.
 ii. Explain how the BiCMOS inverter performance can be improved. (May 09,08)

9. i. With neat sketches explain the drain characteristics of an n-channel enhancement MOSFET.
ii. An MOS Transistor is operated in the Active region with the following parameters \(V_{GS} = 3.9 \text{V}; \ V_{th} = 1 \text{V}; \ W/L = 100; \ \mu nCox = 90 \ \mu \text{A/V}^2 \)

Find its drain current and drain source resistance. (May 09, Sep 07)

10. i. What are the different forms of pull ups?
 ii. Determine the pull up to pull down ratio of an n MOS inverter driven by another n MOS transistor. (May 09, 04)

11. i. Explain with neat sketches the Drain and Transfer characteristics of n-channel enhancement MOSFET.
 ii. With neat sketches explain the transfer characteristics of a CMOS inverter. (May 09)

12. i. Derive an equation for Tran conductance of an n channel enhancement MOSFET operating in active region.
 ii. A PMOS transistor is operated in triode region with the following parameters. \(V_{GS} = -4.5 \text{V}, \ V_{tp} = -1 \text{V}; \ V_{DS} = -2.2 \text{V}; \ W/L = 95, \ \mu nCox = 95 \ \text{A/V}^2 \). Find its drain current and drain source resistance. (May 09)

13. i. With neat sketches explain the formation of the inversion layer in P-channel Enhancement MOSFET.
 ii. An NMOS Transistors is operated in the triode region with the following parameters \(V_{GS} = 4 \text{V}; \ V_{tn} = 1 \text{V}; \ V_{DS} = 2 \text{V}; \ W/L = 100; \ \mu nCox = 90 \ \text{A/V}^2 \). Find its drain current and drain source resistance. (May 09)

14. i. Explain nMOS inverter and latch up in CMOS circuits.
 ii. Draw the nMOS transistor circuit model and explain various components of the model. (May 08)

15. i. Explain various regions of CMOS inverter transfer characteristics.
 ii. For a CMOS inverter, calculate the shift in the transfer characteristic curve \(\beta_n/\beta_p \) when ratio is varied from 1/1 to 10/1. (May 08)

UNIT – III

1. i. Explain the VLSI Design flow.
 ii. What is a stick diagram? Draw the stick diagram of a three input CMOS NAND gate. (Nov 13)

2. i. What are lambda based design rules? Explain design rules for wires and MOS transistors.
 ii. Explain difference between stick diagram and Layout. Draw layout of two input XOR logic by showing all the layers. (Nov/Dec 13)

3. i. Explain the color code used for drawing stick diagram for NMOS and PMOS designs.
ii. What are the different types of contact cuts made during the fabrication of an IC?
iii. Draw the stick diagram for CMOS inverter.

(Nov/Dec 12)

4. i. Explain Lambda-based design rules with neat figures.
ii. Draw a stick diagram and mask layout of 8:1 nMOS inverter circuit. Both Input and output points should be Poly silicon layer.

(May 12)

5. i. Explain about rules for drawing Stick's Diagram.
ii. Draw the circuit for 2-input NAND gate and draw the layout diagram for the same, giving explanation.

(Jan 11)

6. i. Explain about the Stick notation and rules for Stick Diagram.
ii. Draw the circuit for 2-input NOR gate and its Stick Diagram, giving explanations.

(Jan 11)

7. Explain about the notations used to draw the stick diagram. Draw the Stick's diagram for NMOS Inverter give brief explanation.

(Jan 11)

8. i. What is stick diagram? Draw the stick diagram and layout for a CMOS inverter.
ii. What are the effects of scaling on Vt?
iii. What are design rules? Why is metal-metal spacing larger than poly-poly spacing.

(May 09, 08)

9. Design a stick diagram for the PMOS logic shown below Y=(AB + CD)'.

(May 09, 08)

10. Two nMOS inverters are cascaded to drive a capacitive load CL=14Cg. Calculate the pair delay Vin to Vout in terms of for the given data. **Inverter -A:** LP,U = 12 , WP,U = 4 , LP,d = 1 , WP,d = 1 , **Inverter -B:** LP,U = 4 , WP,U = 4 , LP,d = 2 , WP,d = 8.

(May 09, 06)

11. Design stick diagram and layout for two input CMOS NAND gate indicating all the regions & layers.

(May 09)

12. i. Discuss design rule for wires (orbit 2µ CMOS).
ii. Discuss the transistor related design rule (orbit 2 µ CMOS).

(May 09)

13. Design a stick diagram for CMOS -Ex-OR gate.

(May 09)
14. Design a layout diagram for the CMOS logic shown below. \(Y = (A+B+C)' \) \hspace{1cm} (May 09)

15. Design a layout diagram for the NMOS logic shown below \(Y = [(A+B)C]' \) \hspace{1cm} (Sep, May 08)

16. What is a stick diagram and explain about different symbols used for components in stick diagram. \hspace{1cm} (Sep 08, May 07)

17. Design a layout diagram for pMOS inverter \hspace{1cm} (Sep 08)

18. Design a layout diagram for two input CMOS NOR gate. \hspace{1cm} (Sep, May 08, May 07)

19. Design a stick diagram for n-MOS Ex-OR gate. \hspace{1cm} (Sep 08, Sep, May 07)

20. Design a stick diagram for two input p-MOS NAND and NOR gates. \hspace{1cm} (Sep 08, 06, May 07)

21. Design a layout diagram for CMOS inverter. \hspace{1cm} (May 08, Sep, May 07)

22. Design a stick diagram for two input n-MOS NAND and NOR gates. \hspace{1cm} (May 08, 06)

23. Draw the stick diagram and a translated mask layout for nMOS inverter circuit. (May 08)

24. Draw the stick diagram and mask layout for a CMOS two input NOR gate and stick diagram of two input NAND gate. \hspace{1cm} (May 08)

UNIT IV

1. What is the problem encountered by VLSI circuits in driving large capacitive loads? Suggest and explain two solutions to overcome the problem. \hspace{1cm} (Nov 13)

2. i. Implement the function \(F = ab + c (a+b) \) using CMOS logic.
 ii. What is the effect of delay on driving large capacitive loads?
 iii. Define Logical Effort. Obtain the logical effort of three input NOR gate \hspace{1cm} (Nov/Dec 13)

3. i. What are the issues that happen when large capacitive loads are to be driven? How they are overcome?
 ii. Derive the expression for CMOS inverter rise time and fall time \hspace{1cm} (Nov/Dec 12, May 09)

4. i. Draw the logic circuit for Inverter with a transmission gate to provide tri-state output, and explain the same.
 ii. Explain about Pass Transistor Logic, with examples. \hspace{1cm} (Jan 11)

5. i. Derive the expressions for Rise-Time \(R \) and fall time \(f \) in the case of CMOS Inverter.
 ii. Express the Area capacitance in terms of standard capacitance units. \hspace{1cm} (Jan 11)
6. Explain about Gate level verification and timing Reports pertaining to VLSI Design.
 (Jan 11)

7. Explain clearly about different parasitic capacitances of an n MOS transistor. (May 09, 05)

8. Describe the following briefly
 i. Cascaded inverters as drivers.
 ii. Super buffers.
 iii. BiCMOS drivers.
 (May 09)

9. i. Determine an equation for the propagation delay from input to output of the pass transistor chain shown in figure 4a with the help of its equivalent circuit

 ![Cascaded Inverters Diagram](image)

 ii. What are super Buffers?
 (May 09)

10. i. Explain clocked CMOS logic, domino logic and n-p CMOS logic.
 ii. In gate logic, compare the geometry aspects between two-input NMOS NAND and CMOS NAND gates.
 (May 09)

11. Calculate the gate capacitance value of 1.2μ Technology minimum sized transistor with gate to channel capacitance value is 16 x 10^{-4} pF/μm².
 (May 09)

12. Two n MOS inverters are cascaded to drive a capacitive load CL=16Cg as shown in figure. Calculate the pair delay Vin to Vout in terms of T for the given data.
 Inverter - A
 \[L_{p,U} = 16 \lambda, \quad W_{p,U} = 2 \lambda, \quad L_{p,d} = 2 \lambda, \quad W_{p,d} = 2 \lambda, \]
 Inverter – B
 \[L_{p,U} = 2 \lambda, \quad W_{p,U} = 2 \lambda, \quad L_{p,d} = 2 \lambda, \quad W_{p,d} = 8 \lambda \]
 (May 09, 08, 07)
13. Calculate on resistance of the circuit shown in Figure 1 from VDD to GND. If n-channel sheet resistance $R_{sn} = 10^4$ per square and p-channel sheet resistance $R_{sp} = 3.5 \times 10^4$ per square.

(May 09, 08, 07)

![Figure 1](image)

14. Calculate ON resistance from V_{DD} to GND for the given inverter circuit shown in figure, If n-channel sheet resistance is 10^4 ohm per square

(Sep 08, 06)

![Figure 1](image)

15. Calculate on resistance of the circuit shown in Figure 1 from VDD to GND. If n-channel sheet resistance $R_{sn} = 10^4$ per square and p-channel sheet resistance $R_{sp} = 1.5 \times 10^4$ per square.

(Sep 08, 06)
16. Explain the delay calculation procedure for CMOS inverter.

17. Describe three sources of wiring capacitances. Explain the effect of wiring capacitance on the performance of a VLSI circuit.

18. i. Define and explain the following
 a. Sheet resistance concept applied to MOS transistors and inverters.
 b. Standard unit of capacitance.
 ii. Explain the requirement and functioning of a delay unit.

19. i. Explain the concept of sheet resistance and apply it to compute the ON resistance (VDD to GND) of an NMOS inverter having pull up to pull down ratio of 4:1, if n channel resistance is $R_{sn}=10^4 \text{per square}$.
 ii. Calculate the gate capacitance value is .

20. Calculate the rise time and fall time of the CMOS inverter $(W/L)n=6$ and $(W/L)p=8$, $V_{DD}=3.3V$. Total output capacitance=150fF

UNIT - V

1. Design and explain the working of the following circuits using CMOS transistors
 i. 2 bit counter
 ii. zero cross detector

2. i. Implement Full Adder using transmission gate logic.

16. (May 08, 05)
17. (May 08)
18. (May 08)
19. (May 08)
20. (May 08)

1. (Nov 13)
2. (Nov/Dec 13)
ii. Draw and explain parity generator block diagram and stick diagram.

3. With neat circuit diagram, explain the operation of
 i. Carry look ahead adder
 ii. Barrel shifter. (Nov/Dec 12)

4. i. Design a parity generator by first designing one bit cell.
 ii. What is two phase clocking? How does it help in designing sequential circuits? (May 12)

5. i. Set out the mask layout for a 4 way MUX using transmission gate switches.
 ii. Use the above design as a block and draw a 4 bit shift Left/ Right shifter sub system. (May 12)

6. Implement ALU functions with Adder. (May 12)

7. What are the circuit design considerations in the case of static adder circuits. (Jan 11)

8 i. Explain about bit sliced Data path organization. What is the significance of Data paths in digital processors?
 ii. Give the Truth Table for full adder and explain its Boolean expression. (Jan 11)

9. Draw the circuit for Transmission -gate-based full adder with sum and carry delays of same value and explain its working. (Jan 11)

10. Explain briefly the CMOS system design based on the data path operators, memory elements, control structures and I/O cells with suitable examples. (May 09)

11. Explain how a Booth recoded multiplier reduces the number of adders. (May 09)

12. i. Design a magnitude comparator based on the data path operators.
 ii. Draw the Schematic and mask layout of array adder used in Booth Multiplier and explain the principle of multiplication in Booth Multiplier. (May 09)

13. i. Explain the CMOS system design based on the data path operators with a suitable example.
 ii. Draw and explain the basic Memory- chip architecture. (May 09,08)

14. i. Draw the schematic for tiny XOR gate and explain its operation.
 ii. Draw the circuit diagram for 4-by-4 barrel shifter using complementary transmission gates and explain its shifting operation. (May 08)

UNIT –VI

1. i. Explain the working of a SRAM cell.
 ii. Explain the working principle of content addressable memory. (Nov 13)
2. With relevant circuit diagram, explain the operation of
 i. DRAM cell
 ii. Content Addressable Memory
 (Nov/Dec 12)

3. i. Draw the circuit for 4 transistor SRAM and explain its working.
 ii. Draw the one cell dynamic RAM circuit and explain its working.
 (Jan 11)

4. i. Explain the principle of Gate Arrays.
 ii. With the help of sketches explain how NAND gate can be realized using CMOS gate Arrays.
 (Jan 11)

5. How many ROM bits are required to build a 16-bit adder/subtractor with mode control, carry input, carry output and two’s complement overflow output. Show the block schematic with all inputs and outputs?
 (Jan 10, Mar 06, Nov 05)

6. Design an 8x4 diode ROM using 74x138 for the following data starting from the first location? B,2,4,F,A,D,F,E
 (Jan 10, Nov 05)

7. Draw the internal structure of synchronous SRAM and explain the operation?
 (Nov 09, Mar 06, May 05)

8. Explain how a 4×4 binary multiplier can be designed using 256x8 ROM.
 (Nov 09, 08)

9. i. How many number of address lines are required to access all the locations of a 256K x 8 memory? What is the data word size stored in this memory?
 ii. What are synchronous SRAMs? Describe how synchronous operations are performed in SSRAM with the help of its internal block diagram showing the inputs and outputs.
 (Nov 09)

10. With the help of internal structure of a small SRAM and its timing diagram, describe Read and write operations performed in the SRAM.
 (Nov 09)

11. i. Build a layout for a 32K x 8 ROM using suitable basic building blocks, like, decoders and multiplexers.
 ii. Discuss the concept along with the merits of two-dimensional decoding for a Read Only Memory.
 (Nov 09)

12. i. With the help of internal structure and timing diagram of a typical ROM with active low chip select and output enable signals, describe timing criteria of a ROM to be configured either in normal or power down modes.
 ii. List out the advantages and disadvantages of Read only memories based on combinational circuit design.
 (Nov 09)

13. i. Draw and explain the internal structure of synchronous SRAM
ii. Explain the design procedure of 4x4 binary multiplexer using 256 x 8 ROM. (Nov 09)

14. i. Discuss how PROM, EPROM and EEPROM technologies differ from each other?
 ii. With the help of timing waveforms, explain read and write operations of SRAM. (Nov 08)

15. Realize the logic function performed by 74×381 with ROM. (Nov 08)

16.i. How many ROM bits are required to build a 16-bit adder/subtractor with mode control, carry input, carry output and two's complement overflow output? Show the block schematic with all inputs and outputs?
 ii. Design an 8x4 diode ROM using 74X138 for the following data starting from the first location (Nov 08)

17.i. Design an 8x4 diode ROM using 74x138 for the following data starting from the first location? 1,4,9,B,A,0,F,C (Feb 08, Nov 07, Mar 06)
 ii. Draw the internal structure of synchronous SRAM and explain its operation? (Feb 08, 07, Nov 07, 04)

18. Design an 8x8 diode ROM using 74x 138 for the following data starting from the first location.
 11, 22, 33, FF, DD, CC, 01, 7E (Feb 08)

19. Realize the logic function performed by 74x381 with ROM? (Feb 08, 07, Nov 06, Mar 06)

20. Explain the internal structure of 64K x 1 DRAM? With the help of timing waveforms discuss DRAM access? (Feb 08, 07, Nov 07, 06, 05 Mar 06, Nov 05, May 05)

21. With the help of timing waveforms, explain read and write operations of static SRAM? (Feb 08, Nov 07, 06, 04)

22. Explain the necessity of two dimensional decoding mechanism in memories? Draw MOS transistor memory cell in ROM and explain the operation? (Feb 08, Nov 07, 04)

UNIT –VII

1. i. Explain the parameters affecting the power dissipation of a circuit
 ii. Write short notes on CPLDs. (Nov 13)

2. i. What is FPGA? Draw and explain basic structure of FPGA.
 ii. Implement the following functions using PAL (Nov/Dec 13)
 \[f(a,b,c,d) = ab + bc \]
 \[f(a,b,c,d) = ab + cd \]
 \[f(a,b,c,d) = ba + cd \]
3. i. Differentiate between PROM, PAL and PLA.
 ii. Implement a 3 bit synchronous counter using PAL.
 (Nov/Dec 12)

4. Write a short note on
 i. Hardware / Software co design.
 ii. Timing analysis in chip design flow.
 (May 12)

5. Using block diagrams and schematics explain about Configurable Logic Blocks (CLBs).
 (Jan 11)

6. Explain about the principle, operation, salient features and applications of FPGAs
 (Jan 11)

7. With neat sketch clearly explain the architecture of a PAL.
 (May 09, Sep, May 08, 06, 05)

8. i. What are the advantages and disadvantages of the reconfiguration.
 ii. Mention different advantages of Anti fuse Technology.
 (May 09, Sep 08, 06)

9. i. What are the characteristics of 22V10 PAL CMOS device and draw its I/O structure.
 ii. Explain any one chip architecture that used the anti fuse and give its advantages.
 (May 09, 08)

10. i. Draw and explain the FPGA chip architecture.
 ii. Draw and explain the AND/NOR representation of PLA
 (May 09)

11. i. Draw the typical architecture of PAL and explain the operation of it.
 ii. What is CPLD? Draw its basic structure and give its applications.
 (May 09)

12. Write briefly about:
 i. Channeled gate arrays
 ii. Channeless gate arrays with neat sketches.
 (May 09)

13. i. Explain the methods of programming of PAL CMOS device.
 ii. Draw and explain the architecture of an FPGA .
 (May 09, 08)

14. Implement Full-adder circuit using PAL.
 (May 09, 08)

15. What are the different inputs that are provided to the place and route tool and explain the
 significance of each input
 (Sep 08)

16. Clearly explain each step of high level design flow of an ASIC.
 (Sep 07,08, May 07)

17. Explain the following process in the ASIC design flow.
 (May 08, Sep 07)
 i. Functional gate level verification.
 ii. Static timing analysis
18. i. Draw the typical standard-cell structure showing low-power cell and explain it.
 ii. Sketch a diagram for two input XOR using PLA and explain its operation with the help of
 truth table.
 (May 08)

19. i. Explain the function of 4:1 Mux in PAL CMOS device with the help of I/O structure.
 ii. Explain how the pass transistors are used to connect wire segments for the purpose of
 FPGA programming.
 (May 08)

20. Clearly discuss about the following FPGA Technology
 i. Anti fuse Technology
 ii. Static RAM Technology
 (May 08)

UNIT VIII

1. Discuss a technique of testing a VLSI circuit under these levels
 i. system level
 ii. chip level
 (Nov 13)

2. i. What are the different types of faults that occur in manufacturing of chips?
 Explain with an example.
 ii. What is BILBO? Draw the logic diagram of BILBO and explain its operation in
 different modes.
 (Nov/Dec 13)

3. i. Explain the need for testing.
 ii. Discuss any two system techniques used for system level testing.
 (Nov/Dec 12)

4 i. Explain about:
 i.. Diagnostic Test
 ii. Functional Test
 iii. Parametric Test.
 ii. Explain about Design strategies for Testing.
 (Jan 11)

5. Explain about static Timing and Post Layout Timing.
 (Jan 11)

6. i. What are the different categories of DFT techniques? Explain.
 ii. What is meant by signature analysis in Testing? Explain with an example.
 (Jan 11)

7. Write notes on any TWO
i. DGT
ii. BIST
iii. Boundary scan Testing. (Jan 11)

8. i. Draw the basic structure of parallel scan and explain how it reduces the long scan chains.
ii. Draw the state diagram of TAP Controller and explain how it provides the control signals for test data and instruction register. (May 09, 08)

9. i. What is ATPG? Explain a method of generation of test vector
ii. Explain the terms controllability, observability and fault coverage. (May 09)

10. i. Explain the gate level and function level of testing.
 ii. A sequential circuit with in? inputs and ‘m’ storage devices. To test this circuit how many test vectors are required.
 iii. What is sequential fault grading? Explain how it is analyzed. (May 09)

11. i. Define the term DFT and explain about it.
 ii. Explain any one test procedure to test sequential logic. (May 09)

12. i. Explain how an improved layout can be reduced faults in CMOS circuits.
 ii. Explain how a pseudo random sequence generator may be used to test a 16-bit data path. How the outputs would be collected and checked. (May 08)

13. i. Compare functionality test and manufacturing test.
 ii. What type of testing techniques are suitable for the following:
 a. Memories
 b. Random logic
 c. Data path.
 iii. How IDDQ testing is used to test the bridge faults? (May 08)
7.4.12 ASSIGNMENT QUESTIONS

UNIT I

1. Explain the MOS Transistor operation with the help of neat sketches in the following modes
 i. Enhancement mode
 ii. Depletion mode

2. i. With neat sketches explain the NMOS and PMOS fabrication procedure
 ii. Discuss about the thermal aspects for CMOS and NMOS transistors.

3. Explain the fabrication of a CMOS transistor using N well, P well and twin tub.

4. With neat sketches explain how npn transistor is fabricated in Bipolar process.
 ii. Write about integrated resistor and capacitor fabrication.

5. Write short notes on
 i. Wafer formation
 ii. Oxidation,
 iii. Photolithographic process
 iv. Diffusion and Ion Implementation
 v. Metallization
 vi. Packing
 vii. Testing
UNIT II
1. Derive a relationship between I_{ds} and V_{ds} of an NMOS transistor structure in saturated and unsaturated regions.
2. Explain the latch-up phenomenon in CMOS circuits and the methods by which that can be eliminated.
3. Draw the circuits for n-MOS, p-MOS and C-MOS Inverter and explain about their operation and compare them.
4. What are the different forms of pull ups?
5. Determine the pull up to pull down ratio of an n MOS inverter driven by another n MOS transistor and n MOS invertors driven by pass transistors.

UNIT III
1. Explain the VLSI Design flow.
2. Explain Lambda -based design rules with neat figures.
3. Explain difference between stick diagram and Layout. Draw layout of two input XOR logic by showing all the layers.
4. Draw a stick diagram and mask layout of 8:1 n MOS inverter circuit. Both Input and output points should be Poly silicon layer.
5. Design a layout diagram for the CMOS logic shown below. $Y=(A+B+C)$

UNIT IV
1. Derive the expression for CMOS inverter rise time and fall time.
2. What is the problem encountered by VLSI circuits in driving large capacitive Loads? Suggest and explain two solutions to overcome the problem.
3. Describe the following briefly
 i. Cascaded inverters as drivers.
 ii. Super buffers.
 iii. Bi CMOS drivers
4. Explain clocked CMOS logic, domino logic and n-p CMOS logic.
5. i. Draw the logic circuit for Inverter with a transmission gate to provide tri-state output, and explain the same.
 ii. Explain about Pass Transistor Logic, with examples

UNIT V
1. Implement Full Adder using transmission gate logic.
2. Design a parity generator by first designing one bit cell.
3. What is two phase clocking? How does it help in designing sequential circuits.
4. Design and explain the working of the following circuits using CMOS transistors
 i. 2 bit counter
 ii. zero cross detector
5. With neat circuit diagram, explain the operation of
 i. Carry look ahead adder
 ii. Barrel shifter.
UNIT VI

1. Draw the circuit for 4 transistor SRAM and explain its working.
2. Draw the one cell dynamic RAM circuit and explain its working.
3. With relevant circuit diagram, explain the operation of Content Addressable Memory.
4. i. Discuss the concept along with the merits of two-dimensional decoding for a Read Only Memory
 ii. List out the advantages and disadvantages of Read only memories based on combinational circuit design
5. Design an 8x4 diode ROM using 74X138 for the following data starting from the first location.

UNIT VII

1. What is FPGA? Draw and explain basic structure of FPGA.
2. Implement the following functions using PAL
 \[f(a,b,c,d) = ab + bc \]
 \[f(a,b,c,d) = ab + cd \]
 \[f(a,b,c,d) = ba + cd \]
3. Write briefly about:
 i. Channelled gate arrays
 ii. Channelless gate arrays with neat sketches.
4. Clearly discuss about the following FPGA Technology
 i. Anti fuse Technology
 ii. Static RAM Technology
5. i. What is CPLD? Draw its basic structure and give its applications
 ii. Differentiate between PROM, PAL and PLA

UNIT VIII

1. Discuss few techniques for chip level testing.
2. What are the different types of faults that occur in manufacturing of chips? Explain with an example.
4. Discuss any two system techniques used for system level testing.
5. i. Explain the need for testing
 ii. Explain about Design strategies for Testing.